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Abstract
This paper presents an experimental study on thin liquid drops and films under the combined
action of centrifugal forces due to rotation and radial Marangoni forces due to a corresponding
temperature gradient. We shall examine thinning of a given liquid layer both with and without
rotation and also consider the onset of the fingering instability in a completely wetting liquid
drop. In many of the experiments described here, we use an interferometric technique which
provides key information on height profiles. For thick rotating films in the absence of a
temperature gradient, when an initially thick layer of fluid is spun to angular velocities where
the classical Newtonian solution is negative, the fluid never dewets for the case of a completely
wetting fluid, but leaves a microscopic uniform wet layer in the center. Similar experiments
with a radially inward temperature gradient reveal the evolution of a radial height profile given
by h(r) = A(t)rα , where A(t) decays logarithmically with time, and α � 0.8. In the case
where there is no rotation, small centrally placed drops show novel retraction behavior under a
sufficiently strong temperature gradient. Using the same interferometric arrangement, we
observed the onset of the fingering instability of small drops placed at the center of the rotating
substrate in the absence of a temperature gradient. At the onset of the instability, the height
profile for small drops is more complex than previously assumed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, we present the results of an experimental study
on thin films and drops under the action of centrifugal forces
(due to rotation) and Marangoni forces or surface tension
gradients (arising from a radial temperature gradient). To our
knowledge, this is the first experimental study to combine a
radial temperature gradient with centrifugal forces to study the
dynamics of thin fluid films.

The study of rotating fluids has a long and illustrious
history in fluid dynamics. At large Reynolds numbers,
rotating fluids are of central importance in geophysical and
oceanographic flows and at low Reynolds numbers they play
an important part in industrial processes such as spin coating
and locomotion in biological objects. In the industrial spin
coating process, for example, it is undesirable to have any
fingering instabilities or non-uniformities in the final layer.
However, it is not just the Reynolds number which separates

large scale geophysical flows from low Reynolds number ‘thin
film’ flows. At low Reynolds numbers, wetting forces (through
van der Waals forces and disjoining pressure) are dominant and
the competition between wetting forces and externally applied
forces can give rise to various instabilities. In particular, the
three-phase contact line where the solid, liquid and vapor meet
is still not completely understood and is an area of active
research. In addition, an interesting question concerns the
connection of the thin film solution to the large scale rotating
flow when both types of behavior occur simultaneously.

1.1. Previous work

Regarding films, driven by rotation, one of the first analyses
of isothermal spin coating was done by Emslie [1], who
considered the evolution of a thin axisymmetric film of rotating
fluid on a substrate rotating with a constant angular velocity.
The exact solution of the problem, using only centrifugal and
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viscous shear forces, showed that initially non-uniform profiles
tend to become uniform. Surface tension and disjoining
pressure were not included in the analysis.

The dynamics of thin films with both vertical heating and
variable viscosity have been explored by many authors [2–4],
while Stillwagon et al [5] have explored numerically and
experimentally the effect of uneven substrates. In addition,
applications to heat and mass transfer, specifically those related
to spinning disk reactors, have been recently explored by
Matar et al [6]. The problem of rotating thin films under
the action of a vertical thermal gradient has been analyzed
in the context of spin coating [7], where Schwartz et al
used the lubrication approximation to analyze the flow of
thin films that were exposed to air and lay on a spinning
substrate. Most of the previous work [7–10] has focused on
the stability of small drops placed at the center of rotation, and
in particular on the fingering instability of the rotating drops,
in the absence of temperature gradients. Wu [11] has analyzed
numerically the problem of spin coating of nonvolatile thin
liquid films on an axisymmetrically heated disk. In particular,
he analyzed the effect of a sharp, i.e. step function change, in
the radial temperature profile and predicted the existence of
viscous shocks. These shocks have not yet been experimentally
observed. In the problem analyzed by Wu [11], the temperature
profile was hot at the center and cold on the outer rim. Hence
the surface tension gradient aided the centrifugal force in
draining the fluid film, and instabilities which might have
arisen from opposing Marangoni and centrifugal forces were
not considered.

Regarding drops on a rotating substrate, one of the earliest
works to consider the fingering instability was performed
by Melo et al [10], who stroboscopically followed the time
evolution of milliliter sized drops of silicone oil, and observed
the onset of the fingering instability. They found that the
capillary ridge was no longer circular before the onset of the
instability, and that some features of the instability (critical
radius for onset and film thickness) could be explained by using
the lubrication model in polar coordinates.

Fraysse and Homsy [8] performed detailed experimental
measurements of the fingering instability on both Newtonian
and non-Newtonian fluids and compared their results to a
simple lubrication model. They found that the experimentally
measured values for the azimuthal wavenumber and growth
rate of the observed fingering were in agreement with the
simple theoretical model, provided that the experimentally
measured values of the critical radius of the drop at the onset of
the instability were used. More recently, Schwartz and Roy [7]
performed detailed numerical calculations for the spin coating
problem in cylindrical coordinates within the framework of
lubrication theory, paying particular attention to the contact
angle. In both experiments and simulations it was assumed that
the drop separates into a flat region and then forms a capillary
ridge from which the fingers emerge.

In a previous study of wetting behavior of non-isothermal
drops, Erhard and Davis [12] used a vertical temperature
gradient. They reported either a speeding up or slowing down
of the drop (depending on the direction of the temperature
gradient), which was caused by the presence of macroscopic

Figure 1. A schematic of the ‘hypothetical’ parameter space of thin
film dynamics under the action of both Marangoni and centrifugal
forces.

flows due to convection currents in the drop. Recently, there
has been some interest in controlling drop movement by using
chemical modification of surfaces. Also, Daniel et al [13]
explored the condensing and merging of drops on a surface
with a radial surface tension gradient.

1.2. Parameter space, governing equations, and
nondimensionalization

In order to understand the various physical mechanisms
involved, we consider a nominal parameter space as shown in
figure 1. The x-axis, which corresponds to isothermal rotation,
has been the most well studied part of the parameter space.
The y-axis, which corresponds to the case of a drop or film
moving or retracting under a radial temperature gradient, has
been studied much less. The cross-hatched area under the
dashed curve in the figure represents a region of interest, whose
properties and transitions we map out in a preliminary fashion
here. The Marangoni force is a surface force which arises when
a fluid is subject to a temperature gradient. The surface tension
of most Newtonian fluids decreases with temperature which
creates a force from the hot to the cold side, when the fluid is
placed in a temperature gradient.

In order to understand the time evolution of thin films in
the context of rotating and radially heated flows, we consider
the axisymmetric version of the lubrication equation which
includes surface tension, Marangoni forcing, and disjoining
pressure,
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Here, the pressure function, P(h), includes gravity and
disjoining pressure and is given by
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In the case of a completely wetting fluid, we might model the
disjoining pressure as �(h) = −Ah−3 with A > 0. Here, γ is
the surface tension, ω the angular velocity, ρ the fluid density,
μ the viscosity, g the acceleration due to gravity, and τ the
radial stress (due to a Marangoni effect from the temperature
gradient). Typical radial velocities in these experiments are
∼10−3 cm s−1, which implies that the Coriolis effect will
be negligible compared to centrifugal effects and will not be
considered.

In order to nondimensionalize the equation, we introduce
a height scale, H , a radial scale, R which is set by the radius
of the container, or, in the case of a drop, by the initial drop
radius, and a timescale, T , so that

h = H h̃, r = Rr̃ , t = T t̃ . (4)

The choice of H and T in each case is dictated by the particular
experimental situation at hand. We then drop the tildes on all
nondimensionalized variables, which gives the scaled equation
in terms of nondimensional height h, radial length, r , and time,
t , as,

∂h

∂ t
+ 1

r

∂

∂r

{
C1rh2 + C2r 2h3 − C3rh3 ∂h

∂r

− C4
r

h

∂h

∂r
+ C5rh3 ∂K [h]
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}
= 0, (5)

where all the dimensional constants are combined in the
following five nondimensional numbers,

C1 = τ H T

2μR
, C2 = ρω2 H 2T

3μ
, C3 = ρgH 3T

3μR2
,

C4 = AT

μR2 H
, C5 = γ H 3T

3μR4
.

(6)
In the following sections, we shall consider two main

variations of the thin film problem. In one case, we observe
the evolution of a single drop that is placed at the center
of a rotating surface and is subject to both centrifugal and
Marangoni forces. We also characterize the evolution of a
thick (a few mm) fluid subject to thinning due to rotation and
Marangoni forces.

2. Experimental apparatus

A schematic of the experimental apparatus is shown in figure 3.
A key feature of the apparatus is that it allows the generation of
radial temperature profiles. The basic apparatus consists of a
rotating pre-wetted silicon wafer that rests on and is in good
thermal contact with a cylindrical stainless steel base. The
silicon wafer is 4 inches in diameter and has a highly polished
oxidized surface. Rotation is provided by a stepper motor for
precisely controlled rotation rates (ω/2π ) from ∼10 mHz to
∼10 Hz. An outer boundary restricts the fluid to a cylindrical
region. The whole experiment sits on an optical table.

In order to create a radial temperature gradient, we pump
cooling water from a recirculating cooler to the center of the
substrate. The water returns through an annular channel. The
outer rim is heated by a metal foil heater, attached to the copper

Figure 2. The radial temperature as recorded by the thermistors.

ring. There are six embedded thermistors, which allow us to
monitor the temperature radially along the substrate. We use
slip rings to provide current for the heater and to monitor the
thermistors. During a typical run, the cooler temperature and
heater voltage are externally set and a subset of the thermistors
is monitored constantly. All the thermistors are measured
simultaneously at the beginning and the end of each run. A
constant temperature gradient is generally established within
15–20 min of starting up, depending on the heater power used.
The highest gradient that can be reached is about 20 K cm−1

which is limited by the pumping capacity of the recirculating
cooler and the heat exchanger, restricting the heater power to
about 150 W. Figure 2 shows a typical temperature profile as
recorded by the six thermistors embedded in the stainless steel
base, just below the substrate. All distances are measured from
the center of the cylinder.

Imaging is carried out by illuminating the surface from
above with either nearly monochromatic sodium vapor light
(SVL), or with white light. The SVL source has two closely
spaced lines at 587 and 591 nm. Generally, the average
wavelength, i.e. 589 nm, is assumed. This provides an
inexpensive way to illuminate a large diameter silicon wafer,
and the low coherence of the sodium vapor lamp allows
us to observe interference fringes without the extra speckle
noise which arises in most He–Ne laser sources. When
monochromatic light is incident on a thin fluid film, it is
partially reflected by the top surface of the fluid and partially
reflected by the highly polished silicon substrate on which it
sits. These two reflected light beams generate an interference
pattern where each fringe corresponds to a contour of constant
height. For light of wavelength λ, traveling through a medium
of refractive index n, the separation of the fringes is given
by λ/2n, which is the minimum resolvable distance. With
an SVL source and the fluids used here, the resolution is
∼210 nm, which is slightly better than a He–Ne laser source
(λ = 632 nm). In a typical thin oil film illuminated by white
light, the fringes correspond to contours of equal chromatic
order.
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Figure 3. Schematic of the Marangoni spin coating apparatus. A
circular resistive heater is attached to a copper strip at the outer rim
of the stainless steel base. Six thermistors are embedded radially in
the stainless steel base plate. The optical imaging system uses a
beam splitter, sodium vapor light source, and a CCD camera placed
above the rotating assembly. A typical interference image of the
evolving thin film is shown in the inset.

For placing the drops as closely as possible to the
geometrical center of the rotating surface, we use a specially
machined device that fits snugly into the outer wall of the
apparatus. A snug-fitting hole in the center of this piece guides
a micro-pipette used to meter out drop volumes to a radial
precision of 0.1 mm. For reference, the initial radius of the
smallest drop used was around 0.5 mm. This centering plate is
removed when imaging the fluid.

3. Experimental results

In the following subsections, we describe the results of three
different experiments. In order, these are: (1) thinning of an
originally thick film, (2) fingering instabilities of drops, and
(3) advancing and retracting drops—a contrast of the effects
of centrifugal and Marangoni driving. The forces that come
into play include Marangoni, centrifugal, and disjoining forces.
The disjoining force, which is positive for our experimental
system (silicone oil on silicon wafer), causes the fluid to spread
out on the substrate even in the absence of any externally
applied force. In the case of thinning of a thick film, the
Marangoni force opposes the centrifugal and disjoining forces.
The fingering instabilities of small drops are caused by the
interplay between centrifugal and disjoining forces and the
instability is seen to happen above a certain critical rotational

velocity. In the case of retracting drops the Marangoni force
opposes the disjoining force and leads to an extremely slow
thinning of the drop.

3.1. Thinning of a thick film

The classical problem of a rotating cylinder of fluid with
an open top and without any temperature gradient was first
analyzed by Newton as an example of a non-inertial reference
frame. In the absence of any surface tension and viscosity, the
steady state free surface of the rotating fluid is given by

h(r) = H + (ω2/2g)(r 2 − R2/2), (7)

where h(r) is the surface of the fluid at radial distance r, H
is the height of the fluid layer at rest, R is the radius of the
cylinder, ω is the angular velocity, and g is the acceleration
due to gravity. This solution neglects the damping effects of
viscosity and curvature/wetting effects due to surface tension.
If the angular velocity is increased beyond a critical value,

ωc = 2
√

gH/R, (8)

then the above solution becomes negative for a range of r near
the origin. In fact, the classical solution is then piecewise
continuous, with h = 0 below a critical radius and parabolic
otherwise. The critical radius is given by

rc = R
√

(1 − ωc/ω) ω > ωc. (9)

One of the first and most interesting questions that one might
ask is what role the wetting properties of the fluid have when
the angular speed is increased above ωc. In fact, as we shall see
later, for a partially wetting fluid, e.g. water on hydrophobic
silicon, a hole opens up in the region where the classical
solution is negative. However, for a completely wetting fluid,
e.g. polydimethyl siloxane (PDMS) on a silicon wafer, the fluid
in the central region reduces to a very thin film and never
dewets even for the longest possible runs.

The dynamics of the thinning process can also be affected
by applying a radial temperature gradient. If the temperature
gradient is directed inward, then in the usual case, the outward
centrifugal forces compete with the Marangoni forces which
act radially inward.

We investigate the dynamics of the thinning process using
the experimental apparatus as outlined in section 2. An
example of the evolution of the fluid/film profile in the case
of an isothermal thinning film is illustrated via the interference
patterns shown in figure 4. We observe experimentally that if
a completely wetting fluid is replaced by a partially wetting
fluid like water or glycerol, then a bare spot is formed, along
with a few droplets in the center. The formation of the bare
spots and the asymptotic thinning of the thin films have been
studied elsewhere [14, 15]. It is not surprising that a partially
wetting fluid can undergo a ‘bare spot’ formation, since at
high centrifugal forces, the surface tension disjoining pressure
forces can be easily overcome.

We now consider the interference fringes of figure 4 and
the inset in figure 3 in detail. One of the first things to notice
is the flat region in the center. Since the color in white light is
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Figure 4. Closeup of the time evolution of interference fringes at
30 revolutions s−1 for 50 centistokes PDMS oil shown 300 s apart,
clockwise from top left. Illumination is by sodium vapor lamp. The
images show a section where the thin film joins the classical
Newtonian solution, seen here as the dark outer band without fringes.
Note the thickness of the fringes increases with time as the inner
layer thins.

uniform in this region, this implies that if there are any height
changes they are definitely smaller than 200 nm. Following the
initiation of rotation, this flat region slowly expands outward,
with typical radial speeds of a few ‘mm min−1’ and takes on a
greenish-blue hue under white light. However, the center never
dewets completely.

It is instructive to compare the fringes in this case to the
ones in [16]. By counting the fringes, we can reconstruct a
profile of the height. The separation between two dark or
two bright fringes is 210 nm. Since fringes in monochromatic
light give information about the magnitude of the gradient of
height and not the absolute height, this means that a given
fringe configuration can correspond to either an increasing or
decreasing solution as a function of r . However, as the film
evolves in time, the interference rings move radially outward,
which is consistent with a monotonically increasing solution.
From the detailed interference image, as shown in figure 4, we
see that the width of the fringes beyond the central flat region
increases in time, which indicates that the film is thinning.
Hence, the slope of the layer decreases with time. This thin
fluid layer connects the flat central region to the parabolic
Newtonian solution on the outside. For isothermal thinning,
examples of such profiles inferred from the interference fringes
are given in figure 5.

The most interesting thing to note from the height profile
is that the curvature is opposite (convex downwards) to that of
the macroscopic Newtonian parabola (not shown, but convex
upwards). The flat region in the center expands outward as
time evolves. Note that in all the cases noted above the
fluid is flowing under the combined effect of Marangoni and
centrifugal forces which we follow experimentally by looking
at the change in the free surface, i.e. height profile with time.

We next consider the effect of adding a temperature
gradient, in addition to the wetting and centrifugal forces.

Figure 5. The evolution of the height profile for 50 centistokes
PDMS rotating at 0.500 Hz shown for four different times. The film
in the center decays rapidly to a greenish-blue hue after a few
hundred seconds.

Figure 6. The evolution of the height profile for 10 000 centistokes
PDMS rotating at 0.500 Hz and a temperature gradient of
8.1 K cm−1. The inset shows the corresponding time for each profile.

We note that the disjoining pressure for a wetting fluid will
actually act in concert with the Marangoni forces and help
prevent dewetting. We start with a thick layer (a few mm) of
PDMS on the silicon wafer once the temperature gradient has
been established. From each run, the temperature gradient is
calculated from the slope of the position versus temperature
plot, e.g. figure 2. After the layer has been put on the wafer,
it is generally spun at a high speed of around 5 Hz for half
an hour. As discussed in the previous paragraph, this leaves a
thin uniform layer at the center. After some time, the speed
is lowered to 0.500 Hz, and the evolution of the thin film
at the center is followed for several hours. The temperature
gradient is kept constant during the whole cycle. Even for
very long runs, lasting up to 30 h, the thin film at the center
never reaches a flat, uniform profile, as was seen in the case

5



J. Phys.: Condens. Matter 21 (2009) 464123 S Mukhopadhyay and R P Behringer

Figure 7. The evolution of the amplitude A(t) as a function of time
for four different temperature gradients assuming that α is fixed at
0.8. The curves show a logarithmic fit of the form
A = 1/(a + b ln(t)).

for isothermal rotation. Figure 6 shows experimental plots
of the time evolution of the height profile for a temperature
gradient of 8.1 K cm−1. All the height profiles are obtained for
ω/2π = 0.500 Hz. Note that although the film profile thins
out progressively in time, there is no ‘flat region’ at the center
as in the case of isothermal rotation.

In this case, it is possible to fit power laws, h(t) ∼
A(t)rα(t) to the height profile as a function of time. Both
A(T ) and α are, in principle, functions of time. However,
to a very good approximation, we may treat α as a constant,
α = 0.8, and assume that all the time dependence is contained
in A(t). A changes from 5, when the temperature gradient
is 5.75 K cm−1, to 0.2 when the temperature gradient is
15.9 K cm−1. In figure 7, we see that the amplitude A(t)
decays logarithmically slowly, a particularly novel feature.

3.2. Fingering instabilities of drops

In this section, we show experimental results for fingering
instabilities of small drops where the temperature gradient has
been turned off, so there is no Marangoni force. The results
in this section are also distinguished by the fact that we use
relatively small drops ranging in volume from about 100 μl to
about 10 ml in volume. The initial radii of the drops range from
∼5 mm for a 100 μl drop to ∼2 cm for a 10 ml drop.

A particularly interesting observation from this study is
that the onset of instability can be characterized initially by the
formation of a single finger, which is followed at later times
by other fingers. At the onset of instability we observe, as
seen by previous workers, perturbations of the capillary ridge.
However, below a certain characteristic viscosity-dependent
rotation rate (for 1000 centistokes this corresponds to ωcritical =
1.5 Hz), all the fingers do not nucleate at the same time, as is
seen for example in [10].

As discussed above, it is generally assumed in analytical
calculations and in numerical simulations that the only

Figure 8. Evolution of fingers for drops of various volumes under a
sodium vapor lamp. Top left shows a 10 ml drop where the flat region
and the capillary ridge are observed. Top right shows a 5 ml drop
where the flat region at the center evolves into the capillary ridge, and
fringes are visible. The bottom two panels show a 100 μl drop shown
at two different times separated by 500 s. Note the complicated
fringe profile well after the onset of the fingering instability. All
images are for 1000 centistokes PDMS and rotation rates of 5 Hz.

substantial curvature occurs around the outer rim/capillary
ridge, and that the rest of the drop is a flat film, corresponding
to two well separated height scales. In fact, extensive
experimental observations show that the flat state in the center
is only reached at large times or large drop volumes. To
support these observations, we show in figure 8 fingering
profiles for 500 centistokes silicone oil for long times where
the asymptotic flat profile in the center is reached, and compare
these with drops having a much smaller volume of 100 μl. In
the top left panel, for a drop volume around 10 ml, the shape of
the drop is similar to what has been previously observed. For
small drop volumes, as for example in the second panel on the
top right, this clean separation of lengths becomes ‘blurred’,
and for volumes of 100 μl or less the film in the center is joined
to the outer ridge by a complicated height profile, as seen from
the interference fringes under SVL. For the smaller drops used
here, no flat section in the center can be identified when the
fingers emerge from the droplets. Hence, it is not possible
to separate the flow at the onset into a ridge and flat section
with two different height scales, as seen for example in the
larger drops studied by Schwartz and Roy [7]. At the onset of
the instability, when a single finger emerges, the height profile
starting from the center to the capillary ridge has a parabolic
profile, rather than a flat region connecting the capillary ridge
to the center. For long times, however, separation of height
scales, i.e. a flat central region and two strongly curved ridges
on the outer periphery, occurs.

Some additional comments concerning the placement of
the drops is of importance. As noted in the discussion of
the experimental apparatus, a special insert is used for drop
centering. However, it is possible that the rotational axis has
a slight eccentricity with respect to the geometrical axis. The

6



J. Phys.: Condens. Matter 21 (2009) 464123 S Mukhopadhyay and R P Behringer

Figure 9. Schematic of a profile for a retracting drop. The vertical
bar in the figure corresponds to the edge of the main drop. See
figure 10 for the actual interferometric image. The center of the drop
is about 2 cm from the retracting edge.

importance of this eccentricity, if present, to the onset of the
fingering instability, is not entirely clear at present.

3.3. Advancing and retracting drops

In this section, we consider a perfectly wetting drop placed
at the center of our apparatus and driven only by temperature
gradient, i.e. the ω = 0 limit of the parameter space. One
of the most interesting experimental observations is that for
large enough temperature gradients, a completely wetting fluid
can be made to retract to a smaller equilibrium radius set by
the gradient and droplet volume. For all the measurements
described in this section, the drops have a volume of 10 μl
s, which makes the gravitational force negligible.

Initially, a drop is placed at the center, where it spreads
isothermally for a certain amount of time. After a modest
amount of time, the radii for most drops are between 5 and
10 mm. We then switch on a temperature gradient. The
spreading and the retraction take place on timescales which
are much larger than the typical scales (∼10 min) required
to change the temperature gradient. About ∼1000 s after the
gradient is switched on, a flat region appears between the outer
section of the drop and the central part. And overall, the
drop takes about an hour or so to stop spreading. The drop
then begins to retract. The major features of the retraction are
shown in figure 9. As mentioned above, we observe a central
portion of the circular drop, where the height scales are of the
order of millimeters, that is joined by a flat section, which is
equivalent to a meniscus, to the thin film on the outside. Note
that most of the drop has withdrawn radially inward from the
originally covered substrate, but a thin film remains because of
the wetting nature of the fluid. Over a length scale of a few
millimeters, the height changes from microns to the order of
millimeters, although with an interference technique we can

Figure 10. Closeup of the edge of the retracting drop for four
different times. Clockwise from top left (a) 200 s, (b) 1000 s,
(c) 3000 s, and (d) 20 000 s. The outer edge has moved inwards
relative to the main drop. The field of view is 2.5 mm × 2.5 mm.
Refer to the schematic in figure 9 for the profile. The initial drop
radius, at the beginning of retraction was 1.2 cm and the temperature
gradient was 12 K cm−1.

only probe the thin fluid film on the outside and not the thicker
central part.

The interference images of the retracting drop are shown
in figure 10, at four different times. In the beginning, the thin
film on the outside is joined to the main drop by a flat section
with very few fringes, as shown in panel (a). Around 1000 s,
fringes appear and merge into the main drop, panel (b). As
the drop retracts, the number of fringes decreases as shown
in panels (c) and (d) of figure 10, indicating that the film is
flattening out with time. The thin film withdraws at a very
slow rate, and it also thins as it withdraws. The edge of the
film undergoes increasing roughening with time as seen in the
last two frames of figure 10.

The retraction of the outer edge is an increasingly slow
process where velocities are typically of ∼10−5 mm s−1.
This is at least two orders of magnitude smaller than
the spreading velocities of the same fluid (PDMS) under
isothermal conditions. The capillary number, which is given
by μV/γ , where μ is the viscosity, γ is the surface tension,
and V is the velocity, is extremely small, since the retracting
velocities are very small and both viscosity and surface tension
are finite. Such vanishingly small capillary numbers give
rise to interesting mathematical problems for the asymptotic
analysis of the retracting drop dynamics.

As the film thins, the height of the thin film decreases.
Equating the disjoining pressure term, C4, with the Marangoni
driving term, C1 = τ H T/2μR, we obtain a radial length scale
R = A/τ H 2, and a timescale T = 2μA/τ 2 H 3. Using the
standard value of A = 1.4 × 10−12 ergs for PDMS on oxidized
silicon wafer gives a radial length scale of ∼7.5 × 10−10 cm
and a timescale of ∼3.8 × 10−7 s. We contrast the ratio of
these two scales with the typical observed radial velocities of

7



J. Phys.: Condens. Matter 21 (2009) 464123 S Mukhopadhyay and R P Behringer

Figure 11. The time evolution of the estimated contact angle for the
thinning drop. The line is a fit to t−1.5.

the retracting drop of ∼10−5 mm s−1. We note that the rate of
change of the slope of the thin film, dθ/dt , is generally ∼102

faster than the retraction speed. This shows that the thinning
out process from the outer edge to the main drop proceeds at
a much faster speed than the speed at which the contact line is
driven inwards by the Marangoni force.

In figure 11, we show the change of the contact angle
with time, where the contact angle is extracted from the height
profile by counting fringes as described in section 3.2. The
curve is a least-squares fit to the data and has the form θ ∼
t−1.5. By contrast, Tanner’s law for spreading of the same
wetting fluid is given by θ ∼ t−0.3. This is a highly unusual
exponent and it should be borne in mind that simple receding
contact angle hysteresis cannot explain this since there is no
advancing contact line in this system. The droplet recedes into
the main body of the drop with time and for a perfectly wetting
fluid, as in our experimental system, one does not expect any
contact line hysteresis.

4. Conclusions and future work

In this paper, we describe experiments on rotating drops and
thin films with and without the additional novel feature of a
radial temperature gradient. To the best of our knowledge,
this is the first experimental study of the evolution of a thin
film under the effect of both centrifugal and radial Marangoni
forces.

For thick rotating films in the absence of a temperature
gradient, we explore the connection between a thinning
centrifugally driven film and an outer solution having the
‘Newton’s bucket’ form. We found that when an initially thick
layer of fluid is spun at sufficiently high angular velocities,
such that the classical Newtonian solution is negative, the
fluid never dewets for the case of a completely wetting fluid.
In the case of isothermal rotation, the final observed state
was a central uniform thin film, which appeared greenish-
blue in white light and exhibited no interference fringes in

monochromatic or white light. This forms the backdrop for
similar experiments with the addition of a radially inward
temperature gradient. The evolution of the height profile when
a radial temperature gradient was applied to the rotating thin
film was studied in detail and we obtained an empirical scaling
for the profiles. Specifically, we found a universal radial
dependence of the height given by h(r) = A(t)rα , where A(t)
decays logarithmically with time, and where α � 0.8 appears
constant.

We then explored the behavior of small drops in the
absence and presence of radially inward temperature gradients.
In the case where there is no rotation but only a temperature
gradient, we observed that it is possible to make a completely
wetting drop retract under the application of a sufficiently
strong temperature gradient. Using the same interferometric
arrangement, we observed the onset of the fingering instability
of small drops placed at the center. At the onset of the
instability, the height profile is far more complex than what
is observed for larger drops. A clean separation into a flat
part and a separate capillary ridge turns out to be the exception
rather than the rule in our studies. We note that the use of an
interferometric technique provides new information that was
not available in previous work [10] based on shadowgraph
or stroboscopic techniques. The interferometric approach
demonstrates that at the onset of the instability for small drops
there is a complex height profile. We note, too, that in
the present experiments, we observe cases where the initial
instability can start from a single finger before forming up to
as many as 12, in contrast to the experiments of Melo et al [10]
for which the instability typically starts from four fingers.

Currently, modeling and numerical studies are being
undertaken to gain insight into the rich phenomenology
observed in this experimental system. Future work will involve
looking at the effect of Marangoni forces on the fingering
instabilities of rotating drops. Other exciting possibilities
involve probing the behavior of complex fluids, such as non-
Newtonian fluids or liquid crystals.
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